
International Journal of Theoretical Physics, VoL 29, No. 1, 1990 

Cauchy Boundaries of Space-Times 

J a c e k  G r u s z c z a k  ~ 
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The definition of space-time is reformulated so as to elucidate the role of topology 
and the so-called dynamical structure of space-time. The nonuniqueness of the 
Cauchy boundary for space-times is discussed. The definition of space-time with 
Cauchy boundary (C-space-time) is proposed and Cauehy boundaries of C-space 
times for Friedmanian models are constructed. 

I N T R O D U C T I O N  

During more than 70 years of  relativistic physics, the smooth Lorentz 
manifold concept as a model for space-time has played a central role within 
the theoretical scheme of  relativity (Beem and Ehrlich, 1981; Hawking and 
Ellis, 1973; Geroch and Horowitz, 1979). In spite of  its formal similarity 
to the Riemannian case, the notion of the Lorentz manifold contains a 
richer set of  different structures, such as conformal,  projective, causal, and 
chronological structures, and each of  these structures is supposed to have 
some important  physical connotations. The richness of  these structures, in 
contrast to the Riemannian case, "screens out" the topological structure. 
To be more precise, in the Lorentz case, the topological structure is not 
given in an explicit way and has no metric character. In my view, this is a 
great drawback of  the Lorentz manifold definition: all topological consider- 
ations become difficult. In particular, attempts to define a space-time boun- 
dary as a "p lace"  for singularities have met with serious difficulties, also 
because of  these topological intricacies. For instance, in Schmidt 's elegant 
construction (Schmidt, 1971) of  the singular boundary  of space-time (M, g - )  
the topological methods are used not in the space-time itself, but in the 
bundle of  or thonormal  frames O ( M ) .  The Cauchy boundary (Hawking and 
Ellis, 1973, p. 282) a O ( M )  = O ( M )  - O ( M )  [ O ( M )  is the Cauchy comple- 
tion of O ( M ) ]  "projected"  down to M defines the singular boundary of 
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space-time (b-boundary). Unfortunately, the construction leads to physi- 
cally unacceptable non-Hausdorff phenomena in special cases of space- 
times with b-boundary (Bosshard, 1976; Johnson, 1977). 

There is, however, a possibility to reformulate the definition of space- 
time (Section 1) so as to avoid the majority of the above problems. The 
new definition not only takes control over topology from the very beginning, 
but it also takes into account what I shall call the dynamical structure of 
space-time. 

In Section 2 I discuss the nonuniqueness of the Cauchy boundary 
notion for space-times. Cauchy boundaries for Friedmanian models are 
constructed in Section 3. Section 4 contains a formal definition of space-time 
with the Cauchy boundary (C-space-time). 

1. DYNAMICAL STRUCTURE OF SPACE-TIME 

The reformulation of the definition of space-time is based on the 
commonly known theorem stating that a manifold (M, ~-) (r is topology on 
M) admits the existence of a Lorentz structure g- if and only if (M, ~) is 
a paracompact manifold equipped with CLdirection field DIR(M). As is 
well known, every Cl-manifold (M, ~') is paracompact if and only if it is a 
Riemannian manifold (M, g) (Steenrod, 1951; Geroch and Horowitz, 1979; 
.Choqet-Bruhat et al., 1974). Therefore, every Lorentz Cl-manifold 
(M, g-, ~') is a Riemannian manifold, in the above sense, equipped with 
CLdirection field, and consequently, as a topological space, it is the metric 
space with the metric topology ~-p given by the distance function pg(x, y), 
x, y ~ M, defined as in the following way. The distance pg(x, y) between 
two points x, y ~ M is, by definition, the infimum of the lengths of all 
piecewise differentiable curves of class C 1 joining x and y. The topology 
~'p is equivalent to the topology ~- (see, for example, Beem and Ehrlich, 
1981; Choqet-Bruhat et al., 1974). Unfortunately, the correspondence g-*-~ 
(g, DIR(M)) is not one to one (Beem and Ehrlich, 1981; Geroch, 1971). 
Indeed, many different pairs (g, DIR(M)) correspond to the same Lorentz 
tensor g- on M. Every two such pairs will be called g--equivalent. Up to 
this equivalence, the triple (M, g, DIR(M)) defines the Lorentz manifold 
(M, g-, r). 

Space-time is a time-orientable Lorentz manifold; therefore, the direc- 
tion field DIR(M) is generated by a nowhere vanishing timelike vector field 
r  TM. Vice versa, if DIR(M) is generated by such vector field ~:, the 
corresponding Lorentz manifold is time-orientable (Geroch and Horowitz, 
1979; Godbillon, 1983). Moreover, if ~: generates DIR(M), then Ar does 
this, too (A is a nonvanishing scalar field on M). It can be shown that it 
is possible to choose A in such a manner that the field As c be complete. 
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Therefore the set of integral curves of this field 

{Yx: R--> M: ~x = (Asr)(y), y x ( O ) = x ,  x 6 M }  

defines a smooth (C 1) dynamical system (M, ~b,) without critical points, 
such that ~b,(x) = y~(t) (Hirsch and Smale, 1974; Godbillon, 1983). 

In such a way, with every time-orientable Lorentz manifold (M, g- ,  ~') 
a triple (M, g, ~bt) can be associated (up to g--equivalence). This allows 
one to formulate the following. 

Defini t ion 1. The g--equivalence class of the triple (M, g, ~bt) is said 
to be a space-time if: 

1. (M, g) is a connected, Hausdorff, C~-Riemannian manifold, 
2. (M, ~b,) is a smooth (C l) dynamical system on M without critical 

points. 

~bt will be called the dynamica l  structure o f  space-time. ( . )  denotes the 
g--equivalence class; however, in practice we shall usually deal with rep- 
resentatives of such classes. 

The above definition has a formal character. However, we can assume 
that connection between g-  and (g, ~b,) is given globally by the well-known 
formula (see Choqet-Bruhat et al., 1974, p. 280) 

gab = gab -- 2~a~b/ gcd~C~ d, a, b, c, d = l ,  . . . , d im  M (1) 

which makes the definition useful in practice. The globally defined vector 
field ~ on M without critical points is determined by the dynamical structure 
~b,. The Riemannian metric g defines the above-mentioned function pg and 
consequently the metric topology ~'p (I shall always omit the letter g) 
equivalent to the topology r of (M, g-,  ~-). 

The definition is equivalent to the usual definition of space-time. 
However, its complicated form is not useful for investigations of space-times 
themselves; it is suitable (in my view) for studying topological properties 
of space-times and for investigations of space-times with singularities. 

2. CAUCHY BOUNDARY OF SPACE-TIME 

In this section, I make some mathematical observations in order to 
elucidate the special character of the Cauchy boundary of space-time. 

First, a space-time, according to Definition 1, is an equivalence class 
of dynamical systems on Riemannian manifolds. Thus, with a given space- 
time (M, g, ~b,) we can associate a family ~ of Riemannian manifolds (M, g) 
for which there is ~, such that (M, g, ~,) c (M, g, th,). 
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Second, there is the general conviction that points of a space-time 
boundary would be accumulation points of space-time events. Therefore, 
it is natural to assume that a singular boundary of space-time could be 
defined by means of Cauchy sequences on M. 

In the case of Riemannian manifolds, on the strength of the Hopf- 
Rinow theorem (see for, e.g., (Kobayashi and Nomizu, 1963, p. 172; Beem 
and Ehrlich, 1981), the Cauchy incompleteness is equivalent to the geodesic 
incompleteness. Consequently, the Cauchy boundary OM = if/I- M (f-I is 
the Cauchy completion of M) and the geodesic boundary are the same. 

Unfortunately, the theorem is not true for Lorentzian manifolds and 
the usefulness of the g-boundary and the Cauchy boundary for defining a 
singular boundary of space-time have to be analyzed separately. 

Achievements and difficulties of the g-boundary are well known (see 
e.g., Beem and Ehrlich, 1981; Hawking and Ellis, 1973). In this paper I 
discuss the possibility of defining singular boundaries of space-times by 
means of Cauchy sequences on M. 

A space-time (M, g, Ct), as a topological space, is metrizable. With the 
family ~ of Riemannian manifolds the family ~ = {(M, pg): (M, g) ~ ~} of 
metric spaces can be associated. Every two metric spaces (M, Pt), (M, P2) ~ 
are topologically equivalent. 

The notion of Cauchy sequence is not invariant under homeomorphic 
transformations of metric spaces; the sequence {x,} c M which is the Cauchy 
sequence for (M, Pl)~ ~ need not be one for (M, p2)c ~. However, the 
notion is invariant under uniformly homeomorphic transformations. 

In the following, two Riemannian manifolds (M, gl), (M, g2) c ~ are 
called uniformly equivalent (~ u) if the corresponding metric spaces (M, P l), 
(M, P2) ~ ~ are uniformly homeomorphic. 

The relation - u  divides the family ~ into classes ~ / - u  := ~ ' .  It is 
easy to prove that, for [(M, g)] ~ ~ ' ,  the following statements are true. 

1. If (M, gl), (M, g2) ~ [(M, g)], then the Cauchy completions (~t,/~i), 
i = 1, 2, of metric spaces (M, pi) are uniformly homeomorphic; Mi 
denotes the Cauchy completions of M with respect to Pi. 

2. The Cauchy boundaries OMi, i = 1, 2, for every two representatives 
of the class [(M, g)] have the same topological properties. 

From the above argument it can be seen that, in general, a given 
space-time has no uniquely defined boundary by Cauchy sequences 
{x.}c M. 

In this situation the natural assumption of the uniqueness of the Cauchy 
boundary (as a singular boundary) of a given space-time, with respect to 
its topological properties, compels us to distinguish one class [(M, g)]o ~ ~ ' .  
The geometrical construction of such a distinguished class [(M, g)]o and 
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its connection with the b-boundary construction is discussed in Gruszczak 
et al. (to appear). In the present paper I shall only present some examples 
of cosmological models in which, among all classes ~" for a given model, 
there exists a class [(M, g)]o such that its Cauchy boundary has topological 
properties one should expect from one's theoretical experience. 

3. CAUCHY BOUNDARIES OF FRIEDMANIAN MODELS 

Example I. Let us consider the flat Friedmanian model with radiation: 

ds 2 = R2(x~176 2+ ~km d xk dxm], R ( x  ~ = Ro x~ k, m = 1, 2, 3 

I n  this case, the dynamical structure 6, can be given by the vector field 
= (1, 0, 0, 0). The boundary of our model (see Definition 1) 

4 (R4+,g, ck,:ff~4+~x-->(x~ xk)cR+),  k = 1 , 2 , 3  

where g~b = R2(X~ a, b = 0 , . . . ,  3, is determined by formula (1), is the 
Cauchy boundary of the Riemannian manifold (R4+, g). It can be easily 
shown, by straightforward calculation, that in this case the Cauchy boundary 
(the cosmological singularity) is a single point. 

Example 2. Let us consider the closed Friedmanian model with radi- 
ation (M, g, ~bt), where: 

(a) M is the open area in R 4 between two concentric three-spheres 
S,(0, Pl) and $2(0, p2). 

(b) g is given by the following line element written in four-dimensional 
spherical coordinates: 

ds 2 = R 2 ( p ) { d p  2 + p2[d@2 + sin 2 qJ (dO 2 + sin 2 0 d~2)]} 

where p a (Pl, P2), r a (0, or), 0 ~ (0, ~r), ~ ~ (0, 2vr), Pl = 1, P2 = e~, and 
b = constant of the model, R(p)  = bp -1 sin(ln p). 

(c) The dynamical structure ~bt is given by 

c~t(p, ~, t~, r = (f(p,  t), tp, •, ~) 

f (p ,  t) = [P2(P - Pl) et + Pl(P2- P)e-t][(P -- P,)e t+ (P2- p)e- ' ] - '  

The Cauchy boundary of this model consists of the three-spheres 
S~(O, pl) and $2(0, p2) which are, topologically, two separated points. 
These points coincide with the initial and final cosmological singularities, 
respectively. 

This model will be discussed in detail in a forthcoming paper. Both 
flat and closed cosmological models as space-times with boundaries are 
Hausdorff topological spaces. 
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This result, for the closed Friedmanian model, remains in contrast with 
the b-boundary of this model, and avoids all the troubles of the latter with 
non-Hausdorff behavior and identification of the initial and final sin- 
gularities (Bosshard, 1976; Johnson, 1977). 

4. SPACE-TIME WITH CAUCHY B O U N D A R Y  

The above examples have shown that, for a given space-time, the 
dynamical structure ~bt can be chosen in such a way that the corresponding 
Cauchy boundary of (M, g) has physically reasonable topological properties 
This result encourages the following definition. 

Definition 2. The triple [M, g, ~b,]o will be called a space-time with 
Cauchy boundary (C-space-time). 

The symbol [M, g, ~bt]o denotes the set of all g--equivalent triples 
(M,~,,~t)s(M,g,c~,) such that corresponding Riemannian manifolds 
(M, g) are uniformly equivalent and form a class [(M, g)]o~ ~ ' .  The class 
[(M, g)]o can be distinguished by means of physical arguments. 

Naturally, the Cauchy boundary, for a given C-space-time, is defined 
uniquely and can be treated as its singular boundary. 

Definition 3. The Cauchy boundary of every (M, g) ~ [(M, g)]o~ ~" 
can serve as a singular boundary of the C-space-time [ M, g, ~b,]o. 

The C-space-time notion differs from the usual space-time notion 
(Definition 1) by an additional assumption concerning the space-time's 
uniform structure. This assumption serves only to make the Cauchy boun- 
dary of a given space-time (M, g-, ~-) unique, and does not change its 
geometrical and topological properties; [M, g, q~,]o is a set of g--equivalent 
triples (M, g, ~t) which define the same space-time (M, g-, ~'). The assump- 
tion has a global character and it has no influence on all local space-time 
properties, so it is admissible in the framework of general relativity. The 
C-space-time concept is a workable concept which deserves further elabor- 
ation. 
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